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Robustness to distribution shifts

A core challenge for reliable machine
learning in the wild
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Distribution shifts are everywhere
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Christie et al. 2017, Beery et al. 2021, Bandi et al. 2018, Koh et al. 2021, Peng et al. 2018



The generalization challenge

From scratch Pretraining Fine-tuning



The promise of large-scale pretraining
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The generalization problem revisited

Step one: Step two:

pretraining adaptation o
Diverse (typically Specialize to narrow

unlabeled) data distribution
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Pretrained Supervision during adaptation is still
model coming from limited data



The generalization challenge revisited

From scratch Pretraining Fine-tuning

/

How to retain information beyond the
limited data used for adaptation?



The “art” of neural network training 4&

* What parameters to update (model family) (;%

* Loss function b
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Linear probing vs (full) fine-tuning
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Dataset: BREEDS Living-17

Task: classify into animal categories

Train distribution: one subset of ImageNet hierarchy tree

with animal category as root Train

Test distribution: other subset of ImageNet hierarchy tree

with animal category as root

Pretrained model: MoCo-V2, which has seen unlabeled

ImageNet images (including various types of animals)

Test
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Santurkar et al. 2020



Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Pop quiz: living-17

Scratch 92.4% 58.2%
Linear probing 96.5% ?
Fine-tuning 97.1%

Does linear probing do better
than scratch OOD?
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Dataset: CIFAR 10.1

classity into CIFAR-10 categories
original CIFAR-10 dataset
recent near-replication of the pipeline

MoCo-V2, which has seen unlabeled ImageNet

images

Recht et al. 2019
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Pop quiz: CIFAR10.1

Linear probing 91.8% 82.7

Fine-tuning 97.3%

Does linear probing do better
than fine-tuning OOD?
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Linear probing vs fine-tuning summary
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Linear probing vs fine-tuning summary

Linear probing 82.9%
Fine-tuning 85.1%

Averaged over 10 datasets

Common wisdom is fine-tuning works better than linear probing



Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Linear probing vs fine-tuning summary

Linear probing 82.9% 66.2%
Fine-tuning 85.1% 59.3%

Averaged over 10 datasets

LP performs better than FT OOD on 8 out of 10 datasets



Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Intuition for theoretical result
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Intuition for theoretical result
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Intuition for theoretical result
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Intuition for theoretical result
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Intuition for theoretical result
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Intuition for theoretical result
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Key takeaway

A larger change in parameters
can distort pretrained features

How to retain information beyond the
limited data used for adaptation?



Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Best of both worlds

Why does FT do better ID?

Training data may not be linearly separable in the space of pre-trained
features i.e. imperfect pre-trained features

Why does FT do worse OOD?

Features can change a lot to accommodate a randomly initialized head

Can we refine features without distorting them too much?



Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe Step 2: Fine-tune
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Method to achieve best of both worlds

Idea: modity pre-trained features

Step 1: Linear probe Step 2: Fine-tune

LP-FT method

Can prove that LP-FT dominates both LP and FT under
the simple setting of perfect features



Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022,

Improving fine-tuning

Linear probing 82.9% 66.2%
Fine-tuning 85.1% 59.3% +10% over
fine-tuning!
LP-FT 85.7% 68.9%

L.P-FT obtains better than the best of both worlds



The “art” of neural network training &
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* Loss function I\_"ﬁ



The loss function

Contrastive pretraining
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Goyal, Kumar, Garg, Kolter, Raghunathan. Finetune like you pretrain: improved finetuning of zero-shot vision models. CVPR 2023.

Revisiting the fine-tuning loss function

Contrastive pretraining Finetune like you pretrain (FLYP)
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Goyal, Kumar, Garg, Kolter, Raghunathan. Finetune like you pretrain: improved finetuning of zero-shot vision models. CVPR 2023.

Fine-tune like you pretrain

Distribution shifts on ImageNet
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Goyal, Kumar, Garg, Kolter, Raghunathan. Finetune like you pretrain: improved finetuning of zero-shot vision models. CVPR 2023.

Fine-tune like you pretrain

Also see gains in few-shot learning

Zero shot 56.5% 60.5%
FT 63.1% 61.1%
LP-FET 62.7% 60.9%

FLYP 66.9% 61.3%



Summary

* Pretrained models give large improvements in accuracy, but
how we fine-tune them is key

* General principle: minimize distortion while fine-tuning

« Two simple ways to do that
 LP-FT (only change features once the head is trained)
 FLYP (keep the fine-tuning loss identical to the pretraining loss)
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