Rethinking fine-tuning to mitigate feature distortion

Aditi Raghunathan

Bommasani et al. 2021

Robustness to distribution shifts

A core challenge for reliable machine learning in the wild

Train

Pedestrians using a crosswalk

Deploy

Important pedestrians

Distribution shifts are everywhere

Train

Deploy

Satellite remote sensing (different regions)

Tumor detection (new hospitals)

Train

Deploy

Wildlife conservation (different forests)

Sim-to-real

Christie et al. 2017, Beery et al. 2021, Bandi et al. 2018, Koh et al. 2021, Peng et al. 2018

The generalization challenge

The promise of large-scale pretraining

The generalization problem revisited

The generalization challenge revisited

The "art" of neural network training

- What parameters to update (model family)
- Loss function
- Optimization hyperparameters

The "art" of neural network training

• What parameters to update (model family)

• Loss function

• Optimization hyperparameters

Linear probing vs (full) fine-tuning

Dataset: BREEDS Living-17

Task: classify into animal categories

Train distribution: one subset of ImageNet hierarchy tree with animal category as root

Test distribution: other subset of ImageNet hierarchy tree with animal category as root

Pretrained model: MoCo-V2, which has seen *unlabeled* ImageNet images (including various types of animals)

Train

Pop quiz: living-17

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	?
Fine-tuning	97.1%	

Does linear probing do better than scratch OOD?

Pop quiz: living-17

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	82.2%
Fine-tuning	97.1%	

Does linear probing do better than scratch OOD?

Yes!

Pop quiz: living-17

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	82.2%
Fine-tuning	97.1%	?

Does fine-tuning do better than linear probing OOD?

Pop quiz: living-17

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	82.2%
Fine-tuning	97.1%	77.7%

Does fine-tuning do better than linear probing OOD?

Dataset: CIFAR 10.1

Task: classify into CIFAR-10 categories

Train distribution: original CIFAR-10 dataset

Test distribution: recent near-replication of the pipeline

Pretrained model: MoCo-V2, which has seen *unlabeled* ImageNet

images

Pop quiz: CIFAR10.1

Living-17	ID	OOD
Linear probing	91.8%	82.7
Fine-tuning	97.3%	?

Does linear probing do better than fine-tuning OOD?

Pop quiz: CIFAR10.1

Living-17	ID	OOD
Linear probing	91.8%	82.7
Fine-tuning	97.3%	92.3%

Does linear probing do better than fine-tuning OOD?

No!

Linear probing vs fine-tuning summary

Which method does better?

Linear probing vs fine-tuning summary

	ID	OOD
Linear probing	82.9%	
Fine-tuning	85.1%	

Averaged over 10 datasets

Common wisdom is fine-tuning works better than linear probing

Linear probing vs fine-tuning summary

	ID	OOD
Linear probing	82.9%	66.2%
Fine-tuning	85.1%	59.3%

Averaged over 10 datasets

LP performs better than FT OOD on 8 out of 10 datasets

Intuition for theoretical result

Pretrained Features

Intuition for theoretical result

Pretrained Features

Fine-tuning: features for ID examples change in sync with the linear head

Intuition for theoretical result

Pretrained Features

Fine-tuning: features for ID examples change in sync with the linear head

Features for OOD examples change less

Intuition for theoretical result

Pretrained Features

Fine-tuning: features for ID examples change in sync with the linear head

Features for OOD examples change less

Intuition for theoretical result

Pretrained Features

Fine-tuning: features for ID examples change in sync with the linear head

Features for OOD examples change less

Intuition for theoretical result

Pretrained Features

Fine-tuning: features for ID examples change in sync with the linear head

Head performs poorly on OOD examples

Linear probing: freezes pretrained features

Key takeaway

A larger change in parameters can **distort** pretrained features

Best of both worlds

Why does FT do better ID?

Training data may not be linearly separable in the space of pre-trained features i.e. imperfect pre-trained features

Why does FT do worse OOD?

Features can change a lot to accommodate a randomly initialized head

Can we refine features without distorting them too much?

Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe

Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe

Step 2: Fine-tune

LP-FT method

Can prove that LP-FT dominates both LP and FT under the simple setting of perfect features

Improving fine-tuning

	ID	OOD	
Linear probing	82.9%	66.2%	
Fine-tuning	85.1%	59.3%	+10% over
LP-FT	85.7%	68.9 %	

LP-FT obtains better than the best of both worlds

The "art" of neural network training

• What parameters to update (model family)

• Loss function

• Optimization hyperparameters

The loss function

Contrastive pretraining

Can we reduce distortion?

Goyal, Kumar, Garg, Kolter, Raghunathan. Finetune like you pretrain: improved finetuning of zero-shot vision models. CVPR 2023.

Revisiting the fine-tuning loss function

Goyal, Kumar, Garg, Kolter, Raghunathan. Finetune like you pretrain: improved finetuning of zero-shot vision models. CVPR 2023.

Fine-tune like you pretrain

Same pretraining loss can reduce distortion and improve robustness

Fine-tune like you pretrain

Also see gains in few-shot learning

	PatchCamelyon	SST2
Zero shot	56.5%	60.5%
FT	63.1%	61.1%
LP-FT	62.7%	60.9%
FLYP	66.9 %	61.3%

Summary

- Pretrained models give large improvements in accuracy, but how we fine-tune them is key
- General principle: minimize distortion while fine-tuning
- Two simple ways to do that
 - LP-FT (only change features once the head is trained)
 - FLYP (keep the fine-tuning loss identical to the pretraining loss)

Thanks!

Ananya Kumar

Robbie Jones

Tengyu Ma

Percy Liang

Apple

Google

Schmidt Futures

Sachin Goyal

Sankalp Garg

Zico Kolter

Open Philanthropy