Self-supervised Learning for scaling to more modalities and data

Ishan Misra

GenAl@Meta

BigMAC Workshop, ICCV 2023

The era of multimodal learning

- Get billions of (image, text) pairs
- Learn representations that "align" images with text

1. Contrastive pre-training

Image source: CLIP - Radford et al., 2021

Aligned image-text features

Aligned representations are really useful

✓ a photo of guacamole, a type of food.		
X a photo of ceviche , a type of food.		
X a photo of edamame , a type of food.		
X a photo of tuna tartare , a type of food.		
X a photo of hummus , a type of food.		

Image-text retrieval Open-vocabulary classification^[1]

Open-vocabulary detection and segmentation^[2]

"a red cube on top of a blue cube"

"a stained glass window of a panda eating bamboo"

Text to image generation^[3]

[1] CLIP - Radford et al., 2021 [2] Detic - Zhou et al., 2022 [3] GLIDE - Nichol et al., 2022, LAFITE - Zhou et al., 2022

Does SSL Matter?!

- Especially in this era of strong image features from (image, text)?
- Scaling (image, text) data is the way forward?

ge features from (image, text)? ly forward?

Standalone SSL is scaling well

🔺 WSL

🛨 🛨 DINOv2

🔺 SSL

DINOv2 - Oquab et al., 2023

SSL vs. Weakly supervised Debate

SSL vs. and Weakly supervised Debate

Image credit - <u>Wikimedia</u>

Image credit - <u>Flickr</u>

Ex: Image Reconstruction (MAE)

Ex: Noisy Label Supervision (SwAG)

Great potential on diverse downstream tasks

Great fine-tuning classification performance

Great on dense prediction tasks like detection (ViTDeT)

Basis for SOTA foundational models

SOTA for classification (fine-tuning)

SOTA Zero Shot Capabilities (CLIP, LiT)

The effectiveness of MAE pre-pretraining for billion scale pretraining

Mannat Singh*, Quentin Duval*, Kalyan Vasudev Alwala*, Haoqi Fan, Vaibhav Aggarwal, Aaron Adcock, Armand Joulin, Piotr Dollár, Christoph Feichtenhofer, Ross Girshick, Rohit Girdhar, Ishan Misra

ICCV 2023 Poster (Wednesday)

Key idea

- Introduce a "pre" pre-training stage
- Pre-pretraining uses self-supervised learning (no labels)
- Initialize and train as usual

ed learning (no labels)

Pre-pretraining

Step 1: Pre-pretraining

- Use Masked AutoEncoders (MAE)
- Low FLOPs (75% masking)

Step 2: Standard weakly supervised training

- Use image labels
- Multi-target prediction (no contrastive learning!)
- Simple yet SOTA

12

Pre-pretraining at scale

Dataset: Instagram-3B

- •3B unique images
- •5B images after resampling

For weakly-supervised

28K unique hashtags

Architecture: ViT up to 6.5B params

-	-
	-

MAE scales with both data and model

IN1k (accuracy)

He et al., 2022 showed it scaled only with model size

iNat18 (accuracy)

14

Pre-pretraining matters at large scale too!

IN1k linear probe (accuracy)

 Improves performance across all model & data sizes

_	
7 6	
15	١

Pre-pretraining matters at large scale too!

IN1k linear probe (accuracy)

More efficient! —> Better performance at fewer FLOPs

IN1k linear probe (accuracy)

-1	-
	6
_	
	0

Best of SSL and WSP

MAE shines on dense prediction tasks

WSP shines on classification tasks

MAE->WSP combines their strengths

Pushing the state-of-the-art

iNaturalist-18 Fine-tuning

91.3% top-1 accuracy ImageNet1k 1-shot

62.1% top-1 accuracy

Food101 0-shot

96.2% top-1 accuracy Object Net OOD eval

75.8% top-1 accuracy

Multi-modal != **Bi**-modal There are other modalities ...

19

Aligned data is hard to get

Thermal

Motion (IMU)

Audio

Image source: Rawpixel, The Rijksmuseum 20

Solution 1: Single model Omnivore: A Single Model for Many Visual Modalities Video (Single-view) 3D Image

Omnivore: A Single Model for Many Visual Modalities - Girdhar et al., CVPR 202221

Omnivore: Cross-modal alignment emerges!

22

Images are a universal language

Depth

Thermal

RGB

Motion (IMU)

RGB

Audio

RGB

Image source (L to R): SUN RGB-D, LLVIP, Isaque Pereira, Ego4D, Wikimedia, Gabriel Peter

23

Images are a universal language

Depth

Thermal

RGB

Motion (IMU)

RGB

Audio

Image source (L to R): SUN RGB-D, LLVIP, Isaque Pereira, Ego4D, Wikimedia, Gabriel Peter

ImageBind: One Embedding to Rule them All

Rohit Girdhar*, Alaaeldin El-Nouby*, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, Ishan Misra*

https://github.com/facebookresearch/ImageBind

Key Idea

- Images naturally co-occur with different modalities
- Align every modality's representation with images
- Heavily leverage self-supervised learning

Training setup

- 6 modalities Image/Video, Text, Audio, Depth, IMU, Thermal
- Train only with image-paired data
- Separate encoder per modality
- Initialize image & text encoder from CLIP/OpenCLIP and keep frozen

Measuring emergent alignment to text

- Train on (Image, X) (Image, Text)
- Test on (X, Text) -> "Emergent" zero-shot classification

	Image		Video		Depth		Audio		Thermal I		
	IN1k	P365	K400	MSVTT	NYU	SUN	AudioSet	VGGS	ESC	LLVIP	Eg
Random	0.1	0.27	0.25	0.1	10.0	5.26	0.62	0.32	2.75	50.0	(
ImageBind	77.7	45.4	50.0	36.1	54.0	35.1	17.6	27.8	66.9	63.4	2
Text paired	_	_	_	_	41.9	25.4	28.4		68.6	_	
Absolute SOTA	91.0	60.7	89.9	57.7	76.7	64.9	49.6	52.5	97.0	_	

IMU

ImageBind for "upgrading" existing models

Only takes text inputs

Your Favorite Model

ImageBind for "upgrading" existing models

Only takes text inputs

Text

"Multi" Modal

31

Audio-based prompting for image generation

Fire

Engine

Aligned embeddings can be "added"

 (\rightarrow)

Chirping birds

Thanks!

ImageBind

Code & Models released https://imagebind.metademolab.com/

Poster session (Wednesday)

Code & Models https://github.com/facebookresearch/ maws

Effectiveness of MAE Prepretraining

MOST: Unsupervised Object Discovery

Poster session (Friday)

Code & Models https://github.com/rssaketh/MOST/

