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_ Disclaimer: This talk is NOT
an exhaustive overview of all
possible methods.



Era of text-to-image diffusion models!
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Diffusion models in a jiffy

What happens when you refine a noise vector to become a realistic image?

Data Noise

https://nvlabs.github.io/denoising-diffusion-gan/



Diffusion models in a jiffy

When you “condition” the denoising process with text:

DALL-E 2 prompt: “A photo of a white fur monster
standing in a purple room”



Extracting visual connections from textual concepts

Concept discovery in text-to-image diffusion models:

(a) Concept decomposition with CONCEPTOR
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Conceptor; Chefer et al., 2023.



@ We'll focus on “latent-space”
diffusion models throughout this talk.
More specifically, the Stable Diffusion
family.



Limitations and solutions
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Subject-driven generation for personalization
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https://dreambooth.qgithub.io/

e Render concepts/subjects
new to the model in
interesting contexts.

e |Introduce personalization.

DreamBooth; Ruiz et al., 2022.



Subject-driven generation for personalization

Embedding a new subject in the output domain of the (pre-trained) model:
DreamBooth!
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DreamBooth; Ruiz et al., 2022.



Subject-driven generation for personalization

Without the loss of generality, let:

x: original image
€ noise; € ~ N(0,I)
t: diffusion process time; ¢ ~ U([0, 1])
a,, 6, w,: terms controlling noise schedule and sample quality
c¢: conditioning vector (prompt embeddings, for example)
Xg: diffusion model to be learned

Training IEx,c,e,t [wt”f@(atx + OE, C) - XH%}

Inference  Xgen — }ACQ(E, C)



Subject-driven generation for personalization
Prior-preservation loss to preserve the class-specific semantic prior:

Reconstruction Loss

IEx,c,ﬁ,f-:’,t ['wt”i0 (atx + o€, C) - X”%-I—

Awy || Xg (QprXpr + 04 €, Cpr) — Xpi||3]

Class-Specific Prior Preservation Loss

DreamBooth; Ruiz et al., 2022.



One framework, multiple use cases

General subject-driven generation

Input images
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DreamBooth; Ruiz et al., 2022.



One framework, multiple use cases

Art rendition

Input images

Johannes Vermeer Pierre-Auguste Renoir Leonardo da Vinci

DreamBooth; Ruiz et al., 2022.



One framework, multiple use cases

Property modification

Hybrids (“A4 cross of a [V] dog and a [target species] )

DreamBooth; Ruiz et al., 2022.



Pushing the extremes with DreamBooth

v LoRA the Explorer

Click on a LoRA in the gallery to select it




Further reads

e BLIP-Diffusion; Li et al., 2023 (zero-shot subject-driven generation).

e Custom Diffusion; Kumari et al., 2022.

e Pivotal Tuning; Roich et al., 2021 (in SD context it's Textual Inversion +
DreamBooth).
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What if we wanted to condition the generation process on a pose image along with
language supervision?

"Darth Vader dancing in a desert”



Going beyond text conditioning - ControlNets
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ControlNet; Zhang et al., 2023.



ControlNets - a powerful framework to inject additional control

Sketch Normal map
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N Z i

ControlNet; Zhang et al., 2023.



Canny map Pose Final Image

"a giant standing in a fantasy landscape,
best quality”



Further reads

e T2l-Adapters; Mou et al., 2023.
e IP-Adapters; Ye et al., 2023.
e InstructPix2Pix; Brooks et al., 2022.
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Catastrophic neglect & incorrect attribute binding

“A yellow bowl and a blue cat” “A yellow bow and a brown bench”

y zté(:-'!.f:,

Neglects one or more objects in Fails to properly bind attributes to
the generation. objects.

Attend and Excite; Chefer et al., 2023.






# Going to steal a couple of slides
from Hila Chefer here.



DDPM process:

Given an input text prompt, the DDPM gradually denoises a pure noise latent to
obtain the output image.

"A lion with SD Geverated
a crown” _ Tmage

Attend and Excite; Chefer et al., 2023.



Cross Attention
(timestep +)



Cross Attention
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Attend and Excite; Chefer et al., 2023.
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Attend and Excite; Chefer et al., 2023.



Cross Attention reshape
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Attend and Excite; Chefer et al., 2023.



Problem: crown gets
low attention values for
all patches

Attend and Excite; Chefer et al., 2023.



Generative semantic nursing

We want to:

e Encourage the model to better consider the semantic information passed from
the input text prompt.
e Ensure all tokens are attended to by some image patch meaningfully.



. Intuition: a generated subject should have an image patch that significantly

attends to the subject’s token.
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Attend to and
Excite all subject
tokens!

Attend and Excite; Chefer et al., 2023.
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"A Qlay€ul kitten ¢haSing a buttectly n a wild{lower
wieadow”

ttend-and-Excite

Attend and Excite; Chefer et al., 2023.



"A 3‘(\22\\' bear catching a Salmon n a crystal clear
civer Suevounded by a Lovest”

Stable Diffusion Attend-and-Excite

Attend and Excite; Chefer et al., 2023.



Notable mentions

Controlling semantic attributes (training-free):

e Semantic Guidance; Brack et al., 2023.
e LEDITS; Tsaban et al., 2023.

Controlling using “rich-text” (training-free):
e Expressive Text-to-Image Generation with Rich Text; Ge et al., 2023.

Improving discriminative performance:

e Synthetic Data from Diffusion Models Improves ImageNet Classification; Azizi et al., 2023.
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IF prompt: A cute panda standing amidst a
mountain and holding a placard saying “Thank
you!”



