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Fine-tuning vs. zero-shot inference

State-of-the-art ML models often come from a two-step process.

Adapting to a task of interest

1. Pre-training 43 2. Fine-tuning

& Small-scale
= clean task-

~—gpecific data

Large-scale
noisy web

data

What is the best way to fine-tune a large pre-trained model?



Focus today: out-of-distribution robustness

Health care

AY Google

Robotics Chat assistants

=P Need reliable machine learning




Robustness on ImageNet

Lots of progress on ImageNet over the past 10 years, but models are still not robust.

Evaluation: new test sets
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What robustness interventions help?
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What robustness interventions help?
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What robustness interventions help?
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» Do current robustness interventions achieve effective robustness?



ImageNetV2 (top-1, %)

Distribution Shift to ImageNetV2
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—> No current robustness technique achieves non-trivial effective robustness.

-} Only training on (a lot) more data gives a small amount of effective robustness.



[Barbu, Mayo, Alverio,

Luo, Wang, Gutfreund,
~ Tenenbaum, Katz ’19]
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Same trend: only more data gives effective robustness.



CLIP: Connecting
Text and Images

We're introducing a neural network called CLIP which efficiently
learns visual concepts from natural language supervision. CLTP
can be applied to any visual classification benchmark by simply
providing the names of the visual categories to be recognized,
similar to the “zero-shot” capabilities of GPT-2 and GPT-3.

January 5, 2021
15 minute read
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Effective
robustness

+6%

+51%

+40%

+35%

+74%

» Very large improvements in out-of-distribution robustness.
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Large robustness gains

» What makes CLIP

robust?

But: fine-tuning reduces
robustness

» Can we get both high

iIn-distribution and
out-of-distribution
accuracy?
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What makes CLIP robust?

Data Determines Distributional Robustness
in Contrastive Language Image Pre-training (CLIP)

Alex Fang' Gabriel Ilharco! Mitchell Wortsman' Yuhao Wan'

Vaishaal Shankar® Achal Dave® Ludwig Schmidt'™

Abstract

Contrastively trained image-text models such as CLIP, ALIGN, and BASIC have demonstrated
unprecedented robustness to multiple challenging natural distribution shifts. Since these image-text
models differ from previous training approaches in several ways, an important question is what causes the
large robustness gains. We answer this question via a systematic experimental investigation. Concretely,
we study five different possible causes for the robustness gains: (i) the training set size, (ii) the training
distribution, (iii) language supervision at training time, (iv) language supervision at test time, and (v)
the contrastive loss function. Our experiments show that the more diverse training distribution is the
main cause for the robustness gains, with the other factors contributing little to no robustness. Beyond
our experimental results, we also introduce ImageNet-Captions, a version of ImageNet with original text
annotations from Flickr, to enable further controlled experiments of language-image training.




Hypotheses for CLIP’s robustness

Standard ImageNet

CLIP supervised learning
Language supervision Yes No
Training distribution 277 ImageNet
Training set size 400M 1.2M
Loss function Contrastive Supervised
Test-time prompting Yes No

Model architecture ViTs CNNs

14



Hypotheses for CLIP’s robustness

Standard ImageNet
supervised learning

CLIP

Training distribution 277 ImageNet




One takeaway: datasets are a key for improving models

DATACOMP:
In search of the next generation of multimodal datasets

r

Samir Yitzhak Gadre*? Gabriel Ilharco*! Alex Fang*! Jonathan Hayase! Georgios Smyrnis®
Thao Nguyen! Ryan Marten™  Mitchell Wortsman!  Dhruba Ghosh!  Jieyu Zhang!
Eyal Orgad® Rahim Entezari'® Giannis Daras® Sarah Pratt! Vivek Ramanujan'
Yonatan Bitton!! Kalyani Marathe! Stephen Mussmann! Richard Vencu®
Mehdi Cherti®® Ranjay Krishna'! Pang Wei Koh'!'?  Olga Saukh'!®  Alexander Ratner!:1?
Shuran Song? Hannaneh Hajishirzi'»” Ali Farhadi’ Romain Beaumont®
Sewoong Oh!  Alexandros G. Dimakis® Jenia Jitsev%®
Yair Carmon® Vaishaal Shankar? Ludwig Schmidt!:®’

Abstract

Multimodal datascts are a critical component in recent breakthroughs such as Stable Diffusion
and GPT-4, yet their design does not receive the same research attention as model architectures or
training algorithms. To address this shortcoming in the ML ecosystem, we introduce DATACOMP.
a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text
pairs from Common Crawl. Participants in our benchmark design new filtering techniques or

[cs.CV] 25 Jul 2023

Workshop tomorrow at ICCV!



Can we fine-tune CLIP without losing robustness?

Robust fine-tuning of zero-shot models

Mitchell Wortsman*' Gabriel Ilharco*' Jong Wook Kim? Mike Li
Simon Kornblith® Rebecca Roelofs® Raphael Gontijo-Lopes®

Hannaneh Hajishirzi’®  Ali Farhadi*®  Hongseok Namkoong**  Ludwig Schmidt

Abstract

Large pre-trained models such as CLIP or ALIGN offer consistent accuracy across a range of data
distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although
existing fine-tuning methods substantially improve accuracy on a given target distribution, they often
reduce robustness to distribution shifts. We address this tension by introducing a simple and effective
method for improving robustness while fine-tuning: ensembling the weights of the zero-shot and fine-tuned
models (WiSE-FT). Compared to standard fine-tuning, WiSE-FT provides large accuracy improvements
under distribution shift, while preserving high accuracy on the target distribution. On ImageNet and five
derived distribution shifts, WiSE-FT improves accuracy under distribution shift by 4 to 6 percentage
points (pp) over prior work while increasing ImageNet accuracy by 1.6 pp. WiSE-FT achieves similarly
large robustness gains (2 to 23 pp) on a diverse set of six further distribution shifts, and accuracy gains of
0.8 to 3.3 pp compared to standard fine-tuning on seven commonly used transfer learning datasets. These
improvements come at no additional computational cost during fine-tuning or inference.




The problem with fine-tuning

Improved accuracy on D
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Raised as an open problem by researchers from OpenAl, Stanford, Google, etc.



A simple but effective solution

Fine-tuned

Task accuracy

Robustness

Weight-space ensembles for fine-tuning (WIiSE-FT)

Building on [Nagarajan, Kolter '19], [Frankle, Dziugaite, Roy, Carbin 20],
INeyshabur, Sedghi, Zhang ’20].



Training from scratch

Linearly interpolating the weights f \

of two models trained from scratch

encounters a high error barrier Train o

(Frankle et al., 2020).

Schematic.



Fine-tuning

Accuracy remains high when linearly f

interpolating the weights of two networks |

fine-tuned from a shared initialization Fine-tune 0

(Neyshabur et al., 2020). ®
1
2

Fine-tune

Schematic.



Key difference between fine-tuning and
training from scratch

* From schematic to
experiment: fine-tuned
models often appear to
lie in a single, low-error
region.

* [l

Pre-trained Fine-tuned




ImageNet test error
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Accuracy on D’

Schematic: our method, WiSE-FT
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Robustness gains invariant as compute scale increases
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All experiments measured effective robustness
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Robustness gains invariant as compute scale increases
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» Experiment with the full-scale model worked on first try

» ID-OO0OD trends are a reliable scaling law for model design
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Finetune like you pretrain: Improved finetuning of zero-shot vision
models

Sachin Goyal', Ananya Kumar?, Sankalp Garg!, Zico Kolter!®, and Aditi Raghunathan!

LCarnegie Mellon University

2Stanford University
3Bosch Center for Al

December 2, 2022

Abstract

Finetuning image-text models such as CLIP achieves state-of-the-art accuracies on a variety of bench-
marks. However, recent works (Wortsman et al., 2021a; Kumar et al., 2022c) have shown that even
subtle differences in the finetuning process can lead to surprisingly large differences in the final perfor-
mance, both for in-distribution (ID) and out-of-distribution (OOD) data. In this work, we show that a
natural and simple approach of mimicking contrastive pretraining consistently outperforms alternative
finetuning approaches. Specifically, we cast downstream class labels as text prompts and continue op-
timizing the contrastive loss between image embeddings and class-descriptive prompt embeddings (con-
trastive finetuning).




Why stop at averaging two models?

Model soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time

Mitchell Wortsman' Gabriel Ilharco! Samir Yitzhak Gadre? Rebecca Roelofs® Raphael Gontijo-Lopes°
Ari S. Morcos* Hongseok Namkoong > Ali Farhadi! Yair Carmon ° Simon Kornblith“° Ludwig Schmidt !



Conventional procedure for maximizing accuracy
while fine-tuning

Fine-tune with various

hyperparameters
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Conventional procedure for maximizing accuracy
while fine-tuning

Evaluate on held-out val

Fine-tune with various
hyperparameters

1. Fine-tune with various
81 .30/0 hyper-parameters.

2. Choose the model with the
best accuracy on the held-

00 . .
)y out validation set.
Q00000 000000 79.60/0
O00O0 O000O0

00O

drr  821% @

O000



Downsides of the conventional fine-tuning recipe

Choosing the best Ensemble
held-out validation set 84.0%
+ +
82.1%
000 000 000
400000 000000 dQ0000D
5600 0000 50600

Lower accuracy Higher inference cost



Model soups
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Best of both worlds: Results

Cf Same high accuracy * ImageNet SotA

as the ensemble  (Gains on many more

dataset

o Widely used for
multimodal models

 Same fast inference
time as an individual

model




Can we fine-tune a model while preserving its
zero-shot abilities?

Patching open-vocabulary models
by interpolating weights

Gabriel lharco™ Mitchell Wortsman™ Samir Yitzhak Gadre”
University of Washington University of Washington Columbia University
gamaga@cs.washington.edu mitchnw@cs.washington.edu sy@cs.columbia. edu

Shuran Song Hannaneh Hajishirzi Simon Kornblith
Columbia Universiry University of Washington Google Research, Brain Team
shurans@cs.columbia.edu  hannaneh@cs.washington.edu skornblith@google.com

Ali Farhadi Ludwig Schmidt
University of Washington University of Washington
ali@cs.washington.edu schmidtQcs.washington.edu

Abstract

Open-vocabulary models like CLIP achieve high accuracy across many image
classification tasks. However, there are still settings where their zero-shot perfor-
mance 18 far from optimal. We study model patching, where the goal is to improve
accuracy on specific tasks without degrading accuracy on tasks where performance
18 already adequate. Towards this goal, we introduce PAINT, a patching method
that uses interpolations between the weights of a model before fine-tuning and

- the weights after fine-tuning on a task to be patched. On nine tasks where zero-

2v2 [cs.CV] 11 Oct 2022



Conclusions

(Better OOD accuracy without decreasing ID accuracy)

Pre-trained models often can be improved
by fine-tuning on task-specific data. odes
ot CL\P%*
Both in vision and in NLP K
(instruction tuning, RLHF, etc.) | B
o.oﬁii“o

“Standard” fine-tuning can negatively affect P Om_iaéifggfi?a&“se
the capabilities of the pre-trained model. aper? n-de

Interpolating between the pre-trained and fine-tuned models can
preserve robustness while improving task performance.

Open questions

e Simple weight interpolation seems naive — are there better fine-tuning methods??

 Can we remove fine-tuning entirely and improve pre-training instead?



